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SLENDER BODIES OF REVOLUTION HAVING

I MINIMU14 TOTAL DRAG AT HYPIESChIC SPEEDS

by

ANGELO •N•ELE and DAVID 0. HULL()

SUMM~ARY

I This paper considers the problem of minimizing the total drag (sum

of the pressure drag and the friction drag) of a slender, axisyametric

body at zero angle of attack in hypersonic flow under the assumption that

3 the distribution of pressure coefficients is Newtonian and that the friction

coefficient is constant. After the condition that the pressure coefficient

3 be nonnegative is accounted for, the minimal problem in solved for arbi-

trary conditions imposed on the diameter, the length, and the volume under

the assumption that the wetted area is free* It is shown that, if con-

venient dimensionless coordinates are employed (that is, if the abscissa

and the ordinate are normalized with respect to the length and the semi-

thickness), the totality of extremal arcs is composed of a two-parameter

family of solutions, Each extremal arc involves at most two corner points

and, hence, three subarcn: one of these is characterized by a positive

pressure coefficient and in called the regular shape; the other two are

characterized by a zero pressure coefficient and are called the zero-slope

shapes. 'Thus, four classes of bodies can be identified: (I) bodies cam-

(' )Director of Astrodynamics and Flight Mechanics, Boeing Scientific
Research Laboratories.

)Staff Associate, Boeing Scientific Research laboratories.
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posed of a regular shape only, (II) bodies composed of a spike followed

by a regular shape, (III) bodies composed of a regular shape followed by a

cylinder, and (IV) bodies composed of a spike followed by a regular shape

followed by a cylinder.

Particular attention is devoted to solutions for which one, two, or

three of the quantities under consideration are prescribed. If only one

quantity is given (the diameter or the volume), the extremal arc consists

of a single subarc of class I regardless of the friction coefficient. If

two geometric quantities are given (the diameter and the length, the diameter

and the volume, or the length and the volume), a one-parameter family of ex-

tremal arcs exists which involves at most two subarcs; the associated pa-

rameter, called the friction parameter, is proportional to the cubic root

of the friction coefficient and is related to the quantities which are pre-

scribed. Finally, if three geometric quantities are given (the diameter,

the length, and the volume), a two-parameter family of extremal arcs exists I
which involve at most three subarcs; these parameters, called the friction

and the shape parameters, are related to the friction coefficient and the I
geometric quantities which are prescribed. For each of the cases considered,

analytical expressions are derived for the optimum shape, the thickness

ratio, and the drag coefficient. *

!
I
I
!
I
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1* INTRODUCTION

The problem of minimizing the drag of slender bodies of revolution

in hypersonic flow has attracted considerable attention in recent timese

With particular regard to the pressure drag, generalized solutions have

been obtained in Ref. 1 under the assumption that the pressure distribution

is Newtonian and that, among the geometrical quantities being considered

(the diameter, the length, the wetted area, andte volume), two are pro-

scribed and the remaining two are free. These solutions have been extended

in Ref. 2 to cover the case where three of these quantities are given and

only one is free.

While the investigations of Refs. 1 and 2 neglected the friction drag,

it should be noted that there exist practical values of the thickness ratio

for which the friction drag may have the same order of nagnitude as the

pressure drag. Therefore, it is of interest to reinvestigate the problem

of the optimum slender shape from the point of -lew of minimizing the total

forebody drag, that is, the sum of the pressure drag and the friction drag.

For the case where the diameter and the length are prescribed, previous

investigations were carried out by Kennet (Ref. 3) assuming that the friction

coefficient is constant and by Miele and Cole (Ref. 4) assuming that the

distribution of friction coefficients along the contour is represented by a

power law. A more general problem consists of minimizing the total drag for

any number of conditions imposed on the diameter d, the length A, the wetted

area S, and the volume V. This is the problem considered in the present re-

port in connection with the following assumptions: (a) the body is slender

and has a circular cross-section; (b) the distribution of pressure coefficents
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Is Newtonian; and (a) the friction ooeffioeint is constant along the contour.

The corresponding two-difension•l problem is an0 oed I.n Rf. 5 for any

number of onditions imposed on the thiosnels, the length, the enclosed

area, and the moment of Inertia of the contouro
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2. MINIMUM DRAG PROBI4M

jConsider a body of revolution at zero angle of attack in a hypers o

flow, and denote by x an axial coordinate, y a radial coordinate, and f

the derivative dy/dx. Under the slender body approximation y2 < 19 the

assumed Newtonian distribution of pressure coeffioents simplifies to

.2
CP a 2 . Consequently, the drag of that portion of the body which im in-

eluded between stations 0 and x is given by

ID(x) - 4twq fo y(i. +Cr) dx()

w where Cf is the friction coefficient, assumed constant. The corresponding

values of the wetted area and the volume are given byI
S Wxa 2TT f y dx V(x) u¶-fy dx (2)

After the definitions

Dx x V(x)()(U • ~ , u = , a'-(.

are introduced, differentiation of both sides of Eqn. (1) and (2) with re-

spect to the independent variable leads to the following differential con-

straints:

A
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-'( + 0

S-730= (1')

2
4y .0

Bince the requirement that the slope be nonnegative everywhere cam be ex-

pressed an

. 2 (5)

where p denotes a real variable, the differential system composed of Uqs, (4)

and (5) involves one independent variable (x), five dependent variables

(y, a, 9, y, p), and one degree of freedom. In this connection, after as- j
sinng that I

N, " , Sol 0 " in m O (6)

and that some, but not all, of the remainin state variables are given at 3
the final point, one can formulate the minimim drag ]problem as folloves

In the class of functions y(x). &(x). O(x). -(x). p(x) which are consistent I
with the differential constraints (4) and (5) and the initial conditions

06). find that special set which minimdoes the difference Am - G where
G u

I
I
!
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3. NECESSARY CONDITIONS

The previous problem is of the Mayer type with separated end conditions.

Consequently, after the Lagrange multipliers • through )* are introduced

I
and the fundamental function is written as (Refs. 6 and 7)

y(7

the extremal are in described by the following Euler-Lagrange equations:

I i1 •0

i2 o (8)

0 =A

the emoond, third, and fourth of which can be integrated to give

'1 a C 1 0 X'2 - C2 9 13 a 3 (9)

where C1 , C2 , and C3 are constants* Furthermore, after it is observed that

the fundamental function does not contain the independent variable explicitly

and after Eq. (8-5) is accounted for, the following first integral can be

establisheds

I
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ulC ;)+Cy+ C32 0 (10) -

where C is a constant.

Corner conditions. An the fifth Euler equation indicates, the ex-

tremal arc is composed of the subarce

1 4 - 0 and/or p a 0 (11)

Along the former subarcs, called regular shapes, the pressure coefficient

is always positive as long as p is real. Along the latter subarcs, called

zero-slope shapes, the pressure coefficient is always zero. The junction

between the subarca must be studied with the aid of the Erdmann-Weieretrasa

corner conditions. They require that each of the integration constants

C1 , C2, C , C has the same value for all the aubarce composing the extremal

arc and that(*)

M(p * -A 4 3 *2 0 (12)-

where A(.*.) denotes the difference between quintities evaluated after the I
corner and before the corner. These equations admit two sets of solutions 3

Y > 0 IAN , 0 Ai 0 (13)

y-0, 6•- 3

Eq. (12-1) is a consequence of the first integral (10) and the con-

tinuity of the integration constants. I
!
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meaning that the transition from one subaro to another occurs without a

j discontinuity in the slope awy from the axis of symmetry but maY occur

with a discontinuity in the slope on the axis of symmetry. If Eqs. (11)

and (13) are combined, the following relations can be shown to hold on

both sides of a corner point:

I y>O, )•=0 ;.
Y a 0 X 0,

I y=O, )g-O

3 End conditions. The end conditions are partly of the fixed end-point

type and partly of the natural type. The latter must be determined from the

I traneversality condition

|C ÷ (+1+ - 7Cryi2)-j- f - o (15)

which must be satisfied for every system of differentials consistent with

the prescribed end conditions; in particular, it implies that C1 - - 1.

If the length is free, the transversality condition yields C a 0. On

the other hand, if either the wetted area or the volume is free, the trans-

versality condition leads to C2 - 0 or C3 - 0, respectively. Finally, if

the diameter is free, the transversality condition leads to

( .2 + 02 (16)

which, if combined with the Euler-Lagrange equation (8-5), implies that
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'4 .f=0 (1?)

Consequently, if d a 2yf denotes the diameter, the first Integral (10)

yield. the additional relationship I
0+Cd _0d _0d 2 ,-

At this point, it is convenient to separate the discussion into two

basic problomst Ymroblems where the wetted area is given and problems whare

the wetted area is free. As Eqs. (1) and (2-1) show, problems of the first

kind are characterized by the fact that the friction drag is independent of

the shape so that the contour which minimizes the total drag is identical

with that which minimizes the pressure drag. Since shapes of minimum pres- I
sure drag have been fully discussed in Refs. 1 and 2, these problems are I
not considered here* Thus, the analysis is restricted to problems of the

second kind, in which the wetted area is free. This class of problems con- 3
tains several subclasses whickk depend on the number of quantities that are

specified (one, two, or three). For these problems, simple manipulations I
lead to the results which are summarized in Table 1 where two types of re-

lations are indicated: those obtained from the tranavereality condition

and those obtained by combining the results of the transvereality condition I
with the Euler-Lagrange equation (8-5) and the first integral (10). I

Legendre-Cleboch condition. The Legendre-Clebsch condition indicates

t
that the drag is a minimum if the following inequalities are satisfied every-

I
1



where along the extremal arc:1
j t 0, along the regular shape

X4 9 0 along the zero-slope shape

Switching fnction. From the previous discussion, it appears that the

ILagrange multiplier X4 plays an important role in determining the composi-

tion of the extremal arc. If the terminology of control theory in employed,

this multiplier can be called the switching function; its properties are

3 as followsa

X4 = 0 , along the regular shape

X4 g 0 , along the zero-slope shape (20)

X4 m 0 , at a corner point
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A0 030? TOF THE EXTREMALARC

In the previous section, the necessary conditions to be satisfied by

the extreal arc have been stated, In this section, several general conse-

quences of these equations are derived, referring, for the sake of brevity,

to the minimum drag problem (C1 u - 1) with the wetted area unspecified

(C2 a 0), In order to facilitate the analysis, the following dimensionless

coordinates are introducedt

g = x/1 2y/d (21)

together with the definitions

Y- 4/dC -, - C 3Cd/Of (22)
I

With these coordinates, the first integral (10) reduces to the form 3

T3 tf K + n K.Tý(23) 3
TCf

where - a d/f denotes the thickness ratio and ý the derivative d/Vd9.

Basic ine~ualities. The application of the first integral at the end 3
points of the extremal arc indicates that the terminal values of the slope

are given by I

I

I
I
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4T

(24)

1 
( +1 - 3

I

and, consequently, are nonnegative providing the following basic inequalities

are satisfied:I
K, o, K1 +1-K 3 ko (25)

g Incidentally, the optimum shape is blunt-nosed if K1 > 0 while it my be

sharp-nosed if K . 0.

3 Switching function. Since each extremal arc may involve more than one

subarc, it is of paramount importance to calculate the distribution of the

I switching function; in nondimensional form, this function can be defined as

226
2ntc (26)

For the regular shape, it is known that a a O. For the zero-slope shape,

it is known that * w 0 and ¶ u const. Consequently, the Euler-Lagrange

equation (8-1) reduces to

1 1- 2K311 (27)
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which, in the light of the end condition (20-3), admits the particular into-

gral

a a (1 - 2K3 %) (t - C (28)

I
in which the subscript c refers to a corner point.

Sequence of subarcs. In order to determine the appropriate sequence

of subarcs, it is necessary to decide: (a) whether a corner point between

a regular shape and a zero-slope shape can occur; and (b) what the oaxium

number of corner points is. Concerning the first question, the corner con-

ditions (14) and the first integral (23) show that the transition from a

regular shape to a zero-slope shape, and vice versa, is possible if the fol-

lowing relationship is satisfied:

Kl + K A1 -l0 (29)

With regard to the second question, Eq. (28) shows that, since the switching

function varies linearly with the abscissa along the zero-slope shape, it

can only vanish at one point of each zero-slope shape* Due to Eq. (20-3),9

this point must be the corner point between the regular shape and the zero.

slope sbape. This means that (a) the regular shape may be preceded or fol-

lowed by no more than one zero-slope shape and (b) the equations of the zero-

slope shapes can only be a * 0 and/or q a l Furthermore, because of Eq. (29)

and the properties of the switching function, the presence of zero-slope I
"spes requires ht h

I
!
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I 11 * 1 {- 2K3 zO

I

Since no more than two corner points and three subarcs can exist, the to-

tality of extremal arcs consists of four classes of bodiest (I) bodies

composed of a regular shape only, (II) bodies composed of a spike followed

£ by a regular shape, (III) bodies composed of a regular shape followed by a

3 cylinder, and (IV) bodies composed of a spike followed by a regular shape

followed by a cylinder. These bodies are represented symbolically byI
Class I: a U 0

3 Class II: I a 0 ou0

Class III: -0 1

Class IV: ,0- 0 a 0. -* i

Family of solutions. Since the most general type of extremal arc is

of class IV, its geometry can be described by the equations

o", t"o1f .(0 + K 3 d(3

g

[1, 1 131-
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where go and 9, denote the abscissas of the two possible transition points.

Bodies of class I can be obtained from bodies of class IV' by means of the

formal substitution go 0 0, 91 1 1. An analogous remark holds for bodies .

of class II where u1 = 1 and for bodies of class III where go 0 0. It

should be noted, however, that the corner conditions need not bei satisfied I
at these special points. In a functional form, Eqs. (32) can be rewritten

as

71 o 11Q, tog'1 Klg Y (3

so that, after this equation is combined with any one of the following sets

of relations:

Class Is •-0, g

Class II: K aCLO 0 93 (•) I
Class IIIs 0 ,4 -

Class IV: K1(=0, K 3 = 1 I
it is seon that a two parameter family of optimum bodies exists.

For particular types of boundary conditionst considerable simplifiea- !

tions are possible, Thus, if the length Is free (% a 0) )r the volume is

free ( u a 0), the number of independent parameters is reduced by one* An

analogous remark holds for the case where the diameter is free, nce I
K, 1 K3. In conclusion, the number of independent parameters governing

the solution depends on the number of geometric quantities other than the I

I
I!
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wetted area which are prescribed. If three quantities are prescribed,

the problem admits a two-parameter family of solutions. If two quantities

are prescribed, the problem admits a one-parameter family of solutions.

Finally, if only one quantity is prescribed, the problem admits a zero-

j parameter family of solutions, that is, the geometry of the extremal arc

in the glý-plane consists of a single curve regardless of the value of the

friction coefficient. In this conneition, the dimensionless boundary con-

ditions are indicated in Table 2 along with the dimensionless switching

I function at the final point, the elope of the extremal arc at the final

g pointo and the number of independent parameters governing the solution.

I
!
I
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5. SOLUTION OF TIM BOUNDARY VALUE PROBIEM

In this section, a general method for determining the unknown. ap-

pearing In Eqs. (32) is presented* The analysis is facilitated if several

nondimensional integrals are introduced. After the cubic root of both

sides of Eq. (23) is extracted, the variables are separated, and an inte- I
gration over the reguLar shape is performed, the following result is obtaineds

I (g~o$ 93. K1 1 3  (35)

where

¶ud/.4 (36)

denotes the thickness ratio and Id the nondimensional integral

Xd(to9 hl'K1' 5 ) " j t+ 1 - K3÷" ) 4'/ dli (37)

Furthermore, by simple manipulations, the wetted area and the volume can

be expressed as I

(38) "

4V¶/m 3 I (tog %9 K1 9 K3 ) I
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where

I"Kj - K3 1W)'O dli

S 1 1  3 ) .fld'i -i lo P(, 31)o

(39)

f 7f/3Tlld K3 f - 2 l.. 3 dli

1 (90o' gj. K19 K3) dg - g+Q - g

I For a given friction coefficient, the system composed of the six equations

3 ~(34+) through (36) and (38) involves the nine quantities

T, d9 19 S9 V9 g 0 l K19 K 3  (40)

which means that one particular optimum body can be determined if three ad-

ditional relationships are specified. For the boundary conditions con-

sidered in Table 2, these relationships are represented by any one of the

following sets:

d -Const K, K=u0 K 315=0

duaConst, 4 aConst, K3 50 (1

d aConst, V a Const K, - 0O

A aConst, V a Const, K 1 a K,+ I

d w Conat , A z Const , V a Coast

A~r
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Drag coefficient. After the boundary value problb. has been solved,

the next step is to determine the drag of the optimum body. This drag can

be written as

2F7 4 (ýDD~z4£ p. ) (42)

where IDp denotes the dimensionless integral

I~pm¶Tedg (43)

Now, if the drag coefficient is referred to the frontal area at x A £ (that

is, if CD w 4D/Mqd 2), the following relationship can be readily established

between the drag coefficient, the friction coefficient, and the thickness

ratio:

CD . IDp + 4 IS (4)

Notice that, if both sides of Eq. (23) are multiplied by dg and integrated

over the entire length of the extremal arc, the relationship

I



21

can be established. Consequently, after Eqs. (35), (44), and (45) are

I combined, one deduces that

I D .13 ( 1(6
"d (K1  S - K3 IV) (46)

Drag ratio. Another interesting characteristic of the optimum body

is the drag ratio, that is, the ratio of the friction drag to the total

I drag. Because of Eq* (4), this quantity is given by

I~ 4 f I (47)

3 which, in the light of Eq. (45), can be rewritten as

SCDf 21SC D I +3S - 5iv
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6. PAJRTICULAR CASES

In the previous sections, the minimum drag problem was solved funotiomalW

for arbitrary boundary conditions. Here, several particular cases are con-

sidered, and the associated optimum shapes are calculated. Three classes

of problems are oonsidered: (a) problems in which only one geometric I
quantity is prescribed, (b) problems where two geometric quantities are

prescribed, and (c) problems where three geometric quantities are prescribed.

At the onset, a basic lemna relative to problems with the length unspecified 1
must be stated: Since the drag of a spike is zero regardless of its length,

one can take any extremal arc of class I and generate from it an infinite

number of equal drag solutions of class II by adding a spike of arbitrary

length in front. Analogously, one can take any extremal arc of class III

and generate from it an infinite number of equal drag solutions of class IV

by adding a spike of arbitrary length in front. Because of this, whenever

the length is free, only solutions of class I and/or class III are considered. I

6.1. Given Diameter I

If the diameter is given while the length and the volume are free, the

traneversality condition leads to Kim K 3 0. Since Eqs. (34-3) and (34-4)

are not satisfied, there exists no extremal arc belonging to either class III

or class IV. Furthermore, since the length is free, the basic lemma applies:

one my disregard all equal drag solutions of class II and search for a basic

extremal of class I, that is, involving a regular shape only.

For .a 0 and 91 = 1, the equation of the regular shape (32-2) can be i
integrated to yield

I

I
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I n- ("9)

Swhich means that the optimum body is a cone. Since Id 0 1, the following

value is obtained from Eq. (35) for the optimum thickness ratio:

I IfC- - 1.26 06 f (50)

I Furthermore, since is = 1/2, Eq. (46) indicates that the drag coefficient

per unit thickness ratio squared is given byI
CD 3

and Eq. (48) implies that the friction drag of the optimum body in two-

thirds of the total drag.

6.2. Given Volume

If the volume is given while the diameter and the length are free, the

transversality condition leads to K,•- 0, K3 n 1, and o7f - 0. Should the

zero-slope shape I a 1 exist, the switching function would be zero at both

ends of this subarc. However, because of Eq. (28), this is only possible

when = •c Since the length of the zero-slope shape 1 - 1 is zero, there

exists no extremal arc belonging to either class III or class IV. Further-

more, since the overall length of the body is free, the basic lemua applies:

one may disregard all equal drag solutions of class II and search for a basic

extremal of class I, that is, one involving a regular shape only.

I
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I
This unique extreml of class I can be found by substituting t -0 and

1 into Eq. (32-2) so that, upon integration, the equation of the regu.

lar shape becomes (Fig. 1)

Since Id a 3/2, Eq. (35) yields the following value for the optimum thick-

nesn ratio s

Ki O . 0.84 (53)

Finally, since I = ý/5 and 1V • 9/20, Eq. (46) yields the following .ini-5V
mum drag coefficient:

I
7 * 4.56 (54) 1

and Eq.. (48) implies that the friction drag of the optimum body is eight-

ninths of the total drag. I

6.3. Given Diameter and Length I

It the diameter and the length are prescribed while the volume is free,

the traneversality condition leads to K3 a O. Extremal solutions of class IV

do not exist because Eq. (3"-4) in violated. Analogously, extremal solutions I
of class III must be ruled out since Eq. (34-3) is solved by X1 w - 1 and

this is incompatible with Ineqe (25-1). In conclusion, the totality of ox-

I
!
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tremal arcs is represented by a one-parameter family of solutions of either

I class I (regular shape) or class II (spike followed by a regular shape)

depending on whether the friction coefficient is smaller or larger than a

certain critical value. The representation of the results is facilitated

I by introducing the friction parameter

*1* - _ (55)

I
which, because of Eq. (35) as well as the condition that g, - 1, can be

I rewritten as

I Kf - Id( o, Kl) (56)

I
Bodies of class I. These solutions, which were originally studied by

I ~Kennet (Ref. 3), consist of a regular shape only and are obtained for

go a 0 and - ! K1 ! 0. After Eq. (32-2) is employed, the equation of the

optimum shape can be written as

y l(57)•]"f(1, KI)

where

I



26I

FTurthermore, because of Eqs. (46) and (56), the drag coefficient and the

friction parameter become

rD - (1 + K,23- K~f(l, xQ)] f 2 (l, K.1)

(5q) I

*f- l, ) r

Illaination of the parameter % from these equations yields the functional

relationships

"D- (K) (60)
T T

which are presented in Figs. 2 and 3 and are valid in the interval 0 s Kf ! 1.

Incidentally, the solution correspondiag to Kf a 0 is a 3/ 4 -power body while the

solution corresponding to Kf m 1 is a cone. s

Modies of class III These solutions consist of a spike followed by a

regular shape and are obtained for 0 c go % 1 and K. a Oe After the shape I
of the optimum body, the drag coefficient, and the friction yarameter are

written as I

(61)3 0

CD' K. ar' I
,c', I
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elimination of the abscissa of the transition point from these equations

I leads to functional relationships of the form (60) which are plotted in

Figs. 2 and 3 and are valid for 1 ! Kf i -. It is worth noting that these

solutions consist of spikes followed by cones with the transition point

moving backwards as the friction parameter increases*

1 6.4, Given Diameter and Volume

If the diameter and the volume are given while the length is free,

the transversality condition leads to Kl 0. Since the length is free,

3 the fundamental lemma indicates that one should disregard all equal drag

solutions of class II and class IV and search for the one-parameter family

* of extremal solutions of class I and class III only. These solutions occur

when the friction coefficient is smaller or larger than a certain critical

I value, respectively. The representation of the results is facilitated by

j introducing the thickness and friction parameters

4v 4v

which, because of Eqs. (35) and (38-2) as well as the condition that o 0,

can be rewritten as

KT = IV(g!, K3) t Kf = Id(%l, K3) IV(%l, K5) (63)

Bodies of class I. These bodies consist of a regular shape only and

are obtained for •i 1 and - w 3 K • 1. After Eqs. (32-2), (46), and (63)
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are employed, the optiman shape, the thickness parameteor the drag coof-

ficient, and the friction parameter can be rewritten an

1 (1- K 3) I
"" ( -(1 - 2) 22//]

1~ [9-0 +5K 6K3 + 9) (1 -K 3) 2,1

(64)
27 3~~-7 1(-lIK-K)22/3(6]

1l60S3

Kf [9 - (5K. +6K3 ,9 (1- /,3']I

Fl4mination of the parameter K. from these equations yields the functional 1
relationships

I

which are plotted in Fig.. 4 through 6 and are valid in the interva I

0 cK f s g27/40. Incidentally, the solution corresponding to Kf a 0 is a

3/2-power body, that corresponding to Kf - 1/3 in a ooneo and that correspond-
ingto Kf - 27/40 is such that the conploments of the abscissa and the ori I

nate obey a 3/2-power law. I
!
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Bodies of class III. These solutions consist of a regular shape

jfollowed by a cylinder and are obtained for 0 i 9, 9 1 and K3 a 1. After

the shape of the optimum body, the thickness parameter, the drag coefficient,

and the friction parameter are written as

0 9, 1~ T.1/

I KZ • ,1 -11

I'I "0 (66)

CD 3 j 3 (2-~l

K 1

I elimination of the abscissa of the transition point leads to functional

relationships of the form (65) which are plotted in Figs. 4 through 6 and

are valid in the interval 27/40 icK f s . Ini closing, it is worth noting

that the transition point shifts forward as the friction parameter increases*

6.5, Given Length and Volume

If the length and the volume are given while the diameter is free, the

tranaversality condition leads to K, 3 K1 + 1 and a. 0. Should the zero-

slope shape IT - 1 exist, the switching function would be zero at both ends

of this subarc, and this would imply that Ff=g0* Since the length of the

zero-slope shape Tin* 1 is zero, there exists no extremal arc belonging to

A



301
!

either class III or class XVo Consequently, the totality of oxtraml aros

In represented by a one-parameter family of solutions of either clas I

(regular shape) or class II (spike followed by a regular shape) 6epending

on whether the friction coefficient in smaller or larger than a certain

critical values The representation of the results ts facilitated If a J
thickness parameter and a friction parameter are introduced. These pa-

rameters are defined by

K,.-AI * Kf- J* (67)

and, because of Eqs. (33) and (38-2) as well as the condition that 1,

can be rewritten as

K X"/(go$ K1) , Kf - 4-,Kd)1/2(got K1) (68)

Bodies of class I. These solutions consist of a regular shape only

and are obtained for to a 0 and a k K, 2 O. If Eq. (32-2) Is employed,

the optimum shape can be rewritten as n

S"_(69)

where i

S 'j fj f [K1 + - (+ d (7l 0) 1
0I i
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Furthermore, Eqs. (46) and (68) yield the following expressions for the

thiokness parameter, the drag coefficient, and the friction parameters

g 1, K,
I K.u

2~g (1, K1) LK1 g(l, K 1) (1 + K1) h(K1) + 31(Kl)J(1

*1*

K- (1, K1 )If - h(Kl)

I
whereI

I h(Kl) f 11 " [K +¶ -(1 + K) I 1 3 d

(72)

i(K 1 ) f 1 4/3 [K" + in- (1 + d() d2 (12d

{Elimination of the parameter K, from Eqs. (69) and (71) yields functional

relationships of the form (65) which are presented in Figs. 7 through 9

and are valid in the interval 0 ! Kf ! '5.

Bodies of class II. These solutions consist of a spike followed by

a regular shape and are obtained for 0 go s 1 and K1, MO. After the

shape of the optimum body, the thickness parameter, the drag coefficient,

and the friction parameter are written as

I
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3(1 - (73(73) i

If

e•imination of the abscissa of the transition point leads to functional

relationships of the form (65) which are plotted in Fis. 7 through 9 and

are valid in the interval j S Kf s %. Notice that, as the friction pa-

rameter increases, the transition point moves backward. I

6.6. Given Diameters Length, and Volume I
If the diameter, the length, and the volume are given while the wetted

area is free, a two-parameter family of solutions exists and includes bodies I
belonging to each of the four classes defined previously. The representa- i
tion of the results is facilitated if one defines the shape parameter and

the friction parameter as I

K W 4Cf(74)

and observes that these parameters satisfy the conditions (35) and (38-2). !
!
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Bodies of class I. These solutions consist of a regular shap. only

sand are obtained whAm conditions (34-1) are satisfied. ConsequentlY, the

shape of the optimum body is given by

K(, 91 X•)

where

g(l, Ki, K3 ) .f I 70(K1 + 11- K3 V))' 1  dj (76)I
g The associated drag coefficient, shape parameter, and friction parameter

become

g CD (1, K K3,•9 KK.(1, Ki, K3 ) - K3h(Kl, K3 ) + 3i(Kj, 15)]I T

Ke uh(l, K) ()

,f - g(l, K,1, K3)

where

11

15)II -Jo 1  r ' [icl 1 - F-3? ] -"1 q(78)

i 15) -Jo 1 14k/5 [K1 + 1 - K3 ?W] -13dfl
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El3mination of the parameters %1 and K3 from Vq.. (75) and (77) Yields

functional relationships of the form

¶ 71(g, K K, Kf) C - D Kt) (79)
, , I

which are plotted in Figs. 10 through 15 1

Bodies of class IIq These solutions consist of a Sp:Lce followed by a

regular shape and are obtained when conditions (34.2) re satisfied. After

the shape of the optimum body• the drag coefficient, the shape parameter,

and the friotion parameter are written as

ODf 2 [2 +X -(1- -,23 IE 7 1- 3 /]

I

eli•mnation of the parameters C eond X3 yield. functional relationships of

the form (79) which are plotted in Figs. 10 through 1u. !
I
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Bodies of class III. These solutions consist of a regular shape

j followed by a cylinder and are obtained when conditions (34-3) are satis-

fied. The shape of the optimum body is given by

91 g(l~, K.1 )

(81)

where

g(719 K1) Ef 1il/ [K3. + 1 -(1 + Kl)1] -1" d1 (82)

I0
Furthermore, the drag coefficient, the shape parameter, and the friction

parameter become

CD 2g 11K) (1, K1) 1j--+ K1g(l, K1) - (I + K1Y h(K1) + 3i(K 1 )

K i - + K• ) h(, (83)

g(l, + g)

Kf f

where

h(K1) - 1 ?13 [K1 + 1 (K + i)#] 1(

i(I - 1  4/3 [K1 + - K1 + 1)?V] -'13 d¶1

IJ
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I
Elimination of the parameters C, and 1(1 from Eqs. (81) and (83) yields

funotional relationships of the form (79) whioh are plotted In Figs. 10

through 13.

Bodies of class IV. These solutions consist of a spike followed by a

regular shape followed by a cylinder and are obtained when conditions j
(34-4) are satisfied. After the geometry of the optimum body, the drag

coefficient, the shape parameter, and the friction parameter are written as I

00

CD )]3 2 7 + 13° ]

xo f

elidination of the parameters go and 9, leads to functional relationships 5
of the form (79) which are plotted In Figs. 10 through 15.

Lmi•tilM ourves. Now that the relationships ooncerning the geometry I

of the body, the drag coefficient, the shape parameter, and the friction

parameter have been derived, it is useful to determine the shape parameter- I
I
I



3?

friction parameter region in which the equations governing each class of

I bodies are valid, After simple algebraic manipulations, the parametric

equations defining the limiting curves between the different classes of

bodies are given by

1 9 (5K + 6K3 +9)(1 K3)2/3
K a n 0 - (1 - K 2/

I -:Izl •i2• (32

K 3 K- 3 ).

I
h(KI)

K f g(l, K.)

S~(86)

K (1- go)

II- IV
0

11

K- 1 - Lr g

III - IV

K f
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and, if the relevant p•mraeters are eliminated, vield the functional re-
lation

Kf a Kf(15) (87)

I
whiah is presented In rig, 16, Notice that no solution of class IV exists

for X < 3/2 and no solution of class I exists for K > 3/2. Furthermore,

no solution of class III occur@ for % < 9/20 and no solution of Class I1

occurs for K > 9/20.

I

I

I

U
!
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7. DISCUSSION AND CONCLUSIONS

From the previous analysis, it appears that, despite the generality

of the present problem, the method of solution is relatively simple and

has the merit of leading to analytical solutions in each of the particular

cases considered here. The main comments to these solutions are as follows$

(a) For the general problem in which the wetted area is free and

arbitrary conditions are assigned to the diameter, the length, and the

volume, the totality of extremal arcs is represented by a two-parameter

family of solutions if dimensionless coordinates are employed, that is, if

the abscissa and the ordinate are normalized with respect to the length

and the radius. Each member of the family may involve at most two corner

points and, hence, three subarcs. Of these subarcs, one is characterized

by a positive pressure coefficient and is called the regular shape; the

other two are characterized by a zero pressure coefficient and are called

zero-slope shapes. Consequently, four classes of bodies can be identifieds

(I) bodies composed of a regular shape only, (II) bodies composed of a spike

followed by a regular shape, (III) bodies composed of a regular shape followed

by a cylinder, and (IV) bodies composed of a spike followed by a regular

shape followed by a cylinder.

(b) If only one geometric quantity is assigned (the diameter or the

volume) a zero-parameter family of solutions exists (that is, a single curve).

In all cases, the solution is of class I, that is, consists of a regular

shape only. In particular, if the diameter is given, the solution is a cone

whose slope is such that the friction drag is 2/3 uf the total drag. On

the other hand, if the volume is given, the complements of the ordinate and

I
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the abscissa obey a 3/2-power law, and the thickness ratio of the optimum

body is such that the friction drag is 8/9 oi the total drag.

(c) If two geomettic quantities are prescribed (the diameter and the

length, the diameter and the volume, or the length and the volume), a one-

parameter family of solutions exists. This parameter, called the friction

parameter, is proportional to the cubic root of the friction coefficient

and is indicative of the relative importance of the friction drag with re-

speot to the pressure drag. The analysis shows that two distinct behaviors

are possible depending on whether the friction parameter is subcritical

(smaller than a certain critical value) or supercritical (larger than a

certain critical value). If the diameter and the length or the length and

the volume are given, the solution is of class I for subcritical friction

parameters and class II for superoritical friction parameters with the

transition point from the spike to the regular shape shifting backwards as

the friction parameter increases. On the other hand, if the diameter and

the volume are given, the solution is of class I for subcritical friction

parameters and class III for supercritical friction parameters with the

transition point from the regular shape to the cylinder shifting forward

as the friction parameter increases. I
(d) If three geometric quantities are prescribed (the diameter, the

length, and the volume), a two-parameter family of solutions exists. These

parameters, called the friction and shape parameters, determine the existence

of solutions belonging to each of the four classes defined previously.

In closing, it is worth noting that, if the limiting process C.-*-0 0

is carried out, the present solutions reduce to the inviscid flow solutions

already calculated in Refs. 1 and 2. It should also be noted that some of

I
I
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the optimum shapes obtained in the analysis are ooncave; consequently, these

I bodies should be restudied using the Newton-Buasemann pressure coefficient

law; this, however, requires a more thorough understanding of the friction

drag associated with the possible presence of free layers. Finally, when

the square of the thickness ratio becomes nonnegligible with respect to

one, the slender body approxnmation is violated; consequently, this case

I should be reinvestigated using the exact Newtonian expression for the

pressure coefficient, that is, the sine square law.

I
!
I
I

I
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